Absolutely summing composition operators on Bloch-type spaces

Let f be an analytic function on the open unit disk \mathbb{D} , and $\beta > 0$, the Bloch-type space \mathcal{B}^{β} is defined by :

$$\mathcal{B}^{\beta} = \left\{ f \text{ analytic on } \mathbb{D}; \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |f'(z)| < \infty \right\}$$

And the little Bloch-type space by :

$$\mathcal{B}_0^\beta = \left\{ f \text{ analytic on } \mathbb{D}; \lim_{|z| \longrightarrow 1} (1 - |z|^2)^\beta |f'(z)| = 0 \right\}$$

We are going to give the characterization for a composition operator $C_{\varphi}(f) = f \circ \varphi$ to be *p*-summing on Bloch-type spaces. When p = 1 we recover the characterization of nuclear composition operators. We construct an example of a conformal mapping of the unit disc \mathbb{D} into itself with contact points with the unit circle \mathbb{T} , which induces a compact composition operator on $\mathcal{B}^1 = \mathcal{B}$ that fails to be *p*-summing for any $p \geq 1$.